Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 251: 112422, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016326

RESUMO

Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.


Assuntos
Citoglobina , Isoformas de RNA , Humanos , Citoglobina/química , Citoglobina/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
2.
Pigment Cell Melanoma Res ; 37(2): 276-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37920136

RESUMO

Epidermal melanocytes are continuously exposed to sunlight-induced reactive oxygen species (ROS) and oxidative stress generated during the synthesis of melanin. Therefore, they have developed mechanisms that maintain normal redox homeostasis. Cytoglobin (CYGB), a ubiquitously expressed intracellular iron hexacoordinated globin, exhibits antioxidant activity and regulates the redox state of mammalian cells through its activities as peroxidase and nitric oxide (NO) dioxygenase. We postulated that CYGB functions in the melanogenic process as a regulator that maintains oxidative stress within a physiological level. This was examined by characterizing normal human melanocytes with the knockdown (KD) of CYGB using morphological and molecular biological criteria. CYGB-KD cells were larger, had more dendrites, and generated more melanin granules in the advanced stages of melanogenesis than control cells. The expression levels of major melanogenesis-associated genes and proteins were higher in CYGB-KD melanocytes than in wild type (WT) cells. As expected, CYGB-KD melanocytes generated more ROS and NO than WT cells. In conclusion, CYGB physiologically contributes to maintaining redox homeostasis in the melanogenic activity of normal melanocytes by controlling the intracellular levels of ROS and NO.


Assuntos
Melaninas , Animais , Humanos , Citoglobina/genética , Citoglobina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Oxirredução , Mamíferos/metabolismo
3.
J Inorg Biochem ; 250: 112405, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37977965

RESUMO

The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.


Assuntos
Globinas , Células Estreladas do Fígado , Animais , Camundongos , Citoglobina/genética , Citoglobina/metabolismo , Citoglobina/farmacologia , Perfilação da Expressão Gênica , Globinas/genética , Globinas/metabolismo , Células Estreladas do Fígado/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Transcriptoma
4.
Nat Commun ; 14(1): 8333, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097556

RESUMO

Cytoglobin is a heme protein with unresolved physiological function. Genetic deletion of zebrafish cytoglobin (cygb2) causes developmental defects in left-right cardiac determination, which in humans is associated with defects in ciliary function and low airway epithelial nitric oxide production. Here we show that Cygb2 co-localizes with cilia and with the nitric oxide synthase Nos2b in the zebrafish Kupffer's vesicle, and that cilia structure and function are disrupted in cygb2 mutants. Abnormal ciliary function and organ laterality defects are phenocopied by depletion of nos2b and of gucy1a, the soluble guanylate cyclase homolog in fish. The defects are rescued by exposing cygb2 mutant embryos to a nitric oxide donor or a soluble guanylate cyclase stimulator, or with over-expression of nos2b. Cytoglobin knockout mice also show impaired airway epithelial cilia structure and reduced nitric oxide levels. Altogether, our data suggest that cytoglobin is a positive regulator of a signaling axis composed of nitric oxide synthase-soluble guanylate cyclase-cyclic GMP that is necessary for normal cilia motility and left-right patterning.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Citoglobina/genética , Padronização Corporal/genética , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo , Cílios/metabolismo , Óxido Nítrico Sintase/metabolismo
5.
Fish Shellfish Immunol ; 143: 109217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37951319

RESUMO

Cytoglobin (Cygb) is a 21-kDa heme-protein that belongs to the globin superfamily and is expressed in vertebrate tissues. It can participate in the oxidative stress response in organisms through the porphyrin ring. Previous studies have shown that this protein, also known as YdCygb, has potential immune abilities in the infection of Vibrio harveyi in yellow drum (Nibea albiflora). In this study, we report the role of Cygb in the immune response of teleost fish for the first time. Quantitative RT-PCR analysis indicated that YdCygb was highly expressed in the liver and intestine of yellow drum, and its expression can be upregulated by pathogenic attack. The cellular distribution of YdCygb-EGFP proteins was observed in cell membrane, cytoplasm, and nucleus in the kidney cells of N. albiflora. Furthermore, a comparative transcriptome analysis between the YdCygb overexpression group and control vector group identified 28 differentially expressed genes (DEGs). The analysis showed that ANPEP, CLDN5, ORM1/2, SERPINC1 and HPN and ITGAM might play important regulatory roles to Cygb in fish. Notably, using GST-pull down technology, we identified 3-phosphoglyceraldehyde dehydrogenase and intermediate filament protein as direct interactors with YdCygb, playing a role against V. harveyi. The molecular and functional characterization of YdCygb provides better understanding of the genetic basis of disease resistance traits in yellow drum and sheds new light on the functioning of Cygb and its potential regulatory signaling pathway as well.


Assuntos
Perciformes , Animais , Citoglobina/genética , Perciformes/genética , Transcriptoma , Peixes/genética , Imunidade
6.
Biochim Biophys Acta Mol Cell Res ; 1870(8): 119558, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37549740

RESUMO

Cytoglobin (Cygb) is an evolutionary ancient heme protein with yet unclear physiological function(s). Mammalian Cygb is ubiquitously expressed in all tissues and is proposed to be involved in reactive oxygen species (ROS) detoxification, nitric oxide (NO) metabolism and lipid-based signaling processes. Loss-of-function studies in mouse associate Cygb with apoptosis, inflammation, fibrosis, cardiovascular dysfunction or oncogenesis. In zebrafish (Danio rerio), two cygb genes exist, cytoglobin 1 (cygb1) and cytoglobin 2 (cygb2). Both have different coordination states and distinct expression sites within zebrafish tissues. The biological roles of the cygb paralogs are largely uncharacterized. We used a CRISPR/Cas9 genome editing approach and generated a knockout of the penta-coordinated cygb1 for in vivo analysis. Adult male cygb1 knockouts develop phenotypic abnormalities, including weight loss. To identify the molecular mechanisms underlying the occurrence of these phenotypes and differentiate between function and effect of the knockout we compared the transcriptomes of cygb1 knockout at different ages to age-matched wild-type zebrafish. We found that immune regulatory and cell cycle regulatory transcripts (e.g. tp53) were up-regulated in the cygb1 knockout liver. Additionally, the expression of transcripts involved in lipid metabolism and transport, the antioxidative defense and iron homeostasis was affected in the cygb1 knockout. Cygb1 may function as an anti-inflammatory and cytoprotective factor in zebrafish liver, and may be involved in lipid-, iron-, and ROS-dependent signaling.


Assuntos
Globinas , Peixe-Zebra , Masculino , Camundongos , Animais , Citoglobina/genética , Citoglobina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Globinas/genética , Globinas/metabolismo , Metabolismo dos Lipídeos/genética , Espécies Reativas de Oxigênio , Estresse Oxidativo/genética , Homeostase/genética , Lipídeos , Mamíferos/metabolismo
7.
Redox Biol ; 65: 102838, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37573836

RESUMO

Identifying novel regulators of vascular smooth muscle cell function is necessary to further understand cardiovascular diseases. We previously identified cytoglobin, a hemoglobin homolog, with myogenic and cytoprotective roles in the vasculature. The specific mechanism of action of cytoglobin is unclear but does not seem to be related to oxygen transport or storage like hemoglobin. Herein, transcriptomic profiling of injured carotid arteries in cytoglobin global knockout mice revealed that cytoglobin deletion accelerated the loss of contractile genes and increased DNA damage. Overall, we show that cytoglobin is actively translocated into the nucleus of vascular smooth muscle cells through a redox signal driven by NOX4. We demonstrate that nuclear cytoglobin heterodimerizes with the non-histone chromatin structural protein HMGB2. Our results are consistent with a previously unknown function by which a non-erythrocytic hemoglobin inhibits DNA damage and regulates gene programs in the vasculature by modulating the genome-wide binding of HMGB2.


Assuntos
Globinas , Proteína HMGB2 , Animais , Camundongos , Citoglobina/genética , Dano ao DNA , Globinas/genética , Globinas/metabolismo , Proteína HMGB2/genética , Proteína HMGB2/metabolismo , Fatores de Transcrição/genética
8.
Nitric Oxide ; 125-126: 12-22, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35667547

RESUMO

Cytoglobin is a hemoprotein widely expressed in fibroblasts and related cell lineages with yet undefined physiological function. Cytoglobin, as other heme proteins, can reduce nitrite to nitric oxide (NO) providing a route to generate NO in vivo in low oxygen conditions. In addition, cytoglobin can also bind lipids such as oleic acid and cardiolipin with high affinity. These two processes are potentially relevant to cytoglobin function. Little is known about how specific amino acids contribute to nitrite reduction and lipid binding. Here we investigate the role of the distal histidine His81 (E7) and several surface residues on the regulation of nitrite reduction and lipid binding. We observe that the replacement of His81 (E7) greatly increases heme reactivity towards nitrite, with nitrite reduction rate constants of up to 1100 M-1s-1 for the His81Ala mutant. His81 (E7) mutation causes a small decrease in lipid binding affinity, however experiments on the presence of imidazole indicate that His81 (E7) does not compete with the lipid for the binding site. Mutations of the surface residues Arg84 and Lys116 largely impair lipid binding. Our results suggest that dissociation of His81 (E7) from the heme mediates the formation of a hydrophobic cavity in the proximal heme side that can accommodate the lipid, with important contributions of the hydrophobic patch around residues Thr91, Val105, and Leu108, whereas the positive charges from Arg84 and Lys116 stabilize the carboxyl group of the fatty acid. Gain and loss-of-function mutations described here can serve as tools to study in vivo the physiological role of these putative cytoglobin functions.


Assuntos
Globinas , Nitrito Redutases , Citoglobina/genética , Globinas/metabolismo , Heme/química , Histidina/genética , Lipídeos , Mutação , Óxido Nítrico/metabolismo , Nitrito Redutases/metabolismo , Nitritos/metabolismo
9.
Nitric Oxide ; 119: 9-18, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875385

RESUMO

Cytoglobin (Cygb) has been identified as the major nitric oxide (NO) metabolizing protein in vascular smooth muscle cells (VSMCs) and is crucial for the regulation of vascular tone. In the presence of its requisite cytochrome B5a (B5)/B5 reductase-isoform-3 (B5R) reducing system, Cygb controls NO metabolism through the oxygen-dependent process of NO dioxygenation. Tobacco cigarette smoking (TCS) induces vascular dysfunction; however, the role of Cygb in the pathophysiology of TCS-induced cardiovascular disease has not been previously investigated. While TCS impairs NO biosynthesis, its effect on NO metabolism remains unclear. Therefore, we performed studies in aortic VSMCs with tobacco smoke extract (TSE) exposure to investigate the effects of cigarette smoke constituents on the rates of NO decay, with focus on the alterations that occur in the process of Cygb-mediated NO metabolism. TSE greatly enhanced the rates of NO metabolism by VSMCs. An initial increase in superoxide-mediated NO degradation was seen at 4 h of exposure. This was followed by much larger progressive increases at 24 and 48 h, accompanied by parallel increases in the expression of Cygb and B5/B5R. siRNA-mediated Cygb knockdown greatly decreased these TSE-induced elevations in NO decay rates. Therefore, upregulation of the levels of Cygb and its reducing system accounted for the large increase in NO metabolism rate seen after 24 h of TSE exposure. Thus, increased Cygb-mediated NO degradation would contribute to TCS-induced vascular dysfunction and partial inhibition of Cygb expression or its NO dioxygenase function could be a promising therapeutic target to prevent secondary cardiovascular disease.


Assuntos
Citoglobina/metabolismo , Miócitos de Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Aorta/citologia , Sobrevivência Celular/efeitos dos fármacos , Citocromo-B(5) Redutase/metabolismo , Citocromos b5/metabolismo , Citoglobina/genética , Técnicas de Silenciamento de Genes , Camundongos , Músculo Liso Vascular/citologia , Superóxidos/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930834

RESUMO

Cytoglobin (Cygb) was discovered as a novel type of globin that is expressed in mammals; however, its functions remain uncertain. While Cygb protects against oxidant stress, the basis for this is unclear, and the effect of Cygb on superoxide metabolism is unknown. From dose-dependent studies of the effect of Cygb on superoxide catabolism, we identify that Cygb has potent superoxide dismutase (SOD) function. Initial assays using cytochrome c showed that Cygb exhibits a high rate of superoxide dismutation on the order of 108 M-1 ⋅ s-1 Spin-trapping studies also demonstrated that the rate of Cygb-mediated superoxide dismutation (1.6 × 108 M-1 ⋅ s-1) was only ∼10-fold less than Cu,Zn-SOD. Stopped-flow experiments confirmed that Cygb rapidly dismutates superoxide with rates within an order of magnitude of Cu,Zn-SOD or Mn-SOD. The SOD function of Cygb was inhibited by cyanide and CO that coordinate to Fe3+-Cygb and Fe2+-Cygb, respectively, suggesting that dismutation involves iron redox cycling, and this was confirmed by spectrophotometric titrations. In control smooth-muscle cells and cells with siRNA-mediated Cygb knockdown subjected to extracellular superoxide stress from xanthine/xanthine oxidase or intracellular superoxide stress triggered by the uncoupler, menadione, Cygb had a prominent role in superoxide metabolism and protected against superoxide-mediated death. Similar experiments in vessels showed higher levels of superoxide in Cygb-/- mice than wild type. Thus, Cygb has potent SOD function and can rapidly dismutate superoxide in cells, conferring protection against oxidant injury. In view of its ubiquitous cellular expression at micromolar concentrations in smooth-muscle and other cells, Cygb can play an important role in cellular superoxide metabolism.


Assuntos
Citoglobina , Superóxido Dismutase , Animais , Linhagem Celular , Citoglobina/química , Citoglobina/genética , Citoglobina/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Masculino , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
Sci Rep ; 11(1): 10879, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035373

RESUMO

Cytoglobin (CYGB) is a ubiquitously expressed protein with a protective role against oxidative stress, fibrosis and tumor growth, shown to be transcriptionally regulated under hypoxic conditions. Hypoxia-inducible CYGB expression is observed in several cancer cell lines and particularly in various melanoma-derived cell lines. However, reliable detection of hypoxia-inducible mRNA levels by qPCR depends on the critical choice of suitable reference genes for accurate normalization. Limited evidence exists to support selection of the commonly used reference genes in hypoxic models of melanoma. This study aimed to select the optimal reference genes to study CYGB expression levels in melanoma cell lines exposed to hypoxic conditions (0.2% O2) and to the HIF prolyl hydroxylase inhibitor roxadustat (FG-4592). The expression levels of candidate genes were assessed by qPCR and the stability of genes was evaluated using the geNorm and NormFinder algorithms. Our results display that B2M and YWHAZ represent the most optimal reference genes to reliably quantify hypoxia-inducible CYGB expression in melanoma cell lines. We further validate hypoxia-inducible CYGB expression on protein level and by using CYGB promoter-driven luciferase reporter assays in melanoma cell lines.


Assuntos
Biomarcadores Tumorais , Citoglobina/genética , Regulação da Expressão Gênica , Melanoma/genética , Melanoma/metabolismo , Oxigênio/metabolismo , Linhagem Celular Tumoral , Citoglobina/metabolismo , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Melanoma/diagnóstico , Estabilidade Proteica , RNA Mensageiro/genética
12.
Mol Med Rep ; 23(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33649799

RESUMO

Cytoglobin (Cygb) is a globin molecule that is ubiquitously expressed in all tissues and has a protective role under oxidative stress. It has also been demonstrated to be effective in the treatment of alcoholic fatty liver disease (AFLD). In order to study the molecular mechanisms underlying its beneficial effects for the treatment of alcoholic liver, two­dimensional electrophoresis and mass spectrometric analysis were performed on serum and liver tissues from an in vivo rat model of AFLD. A total of 26 differentially expressed proteins were identified in the serum and 20 differentially expressed proteins were identified in liver specimens. Using online bioinformatics tools, it was indicated that these differentially expressed proteins were primarily associated with pathways including binding and uptake of ligands by scavenger receptors, response to corticosteroid, plasma lipoprotein remodeling, regulation of complement cascade, hydrogen peroxide catabolic process, as well as response to nutrient and monosaccharide. The present results suggested that recombinant human Cygb exerts its role in the treatment of AFLD primarily through affecting nutrient metabolism, monocarboxylic acid biosynthesis, regulation of glutathione expression, plasma lipoprotein remodeling and removal of metabolic waste from the blood.


Assuntos
Biologia Computacional/métodos , Citoglobina/farmacologia , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/metabolismo , Proteoma/efeitos dos fármacos , Proteômica/métodos , Proteínas Recombinantes/farmacologia , Animais , Citoglobina/genética , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Proteoma/metabolismo , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Cell Mol Med ; 25(7): 3300-3311, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33611811

RESUMO

Ferroptosis is an iron-dependent mode of non-apoptotic cell death characterized by accumulation of lipid reactive oxygen species (ROS). As a regulator of ROS, cytoglobin (CYGB) plays an important role in oxygen homeostasis and acts as a tumour suppressor. However, the mechanism by which CYGB regulates cell death is largely unknown. Here, we show that CYGB overexpression increased ROS accumulation and disrupted mitochondrial function as determined by the oxygen consumption rate and membrane potential. Importantly, ferroptotic features with accumulated lipid ROS and malondialdehyde were observed in CYGB-overexpressing colorectal cancer cells. Moreover, CYGB significantly increased the sensitivity of cancer cells to RSL3- and erastin-induced ferroptotic cell death. Mechanically, both YAP1 and p53 were significantly increased based on the RNA sequencing. The knock-down of YAP1 alleviated production of lipid ROS and sensitivity to ferroptosis in CYGB overexpressed cells. Furthermore, YAP1 was identified to be inhibited by p53 knock-down. Finally, high expression level of CYGB had the close correlation with key genes YAP1 and ACSL4 in ferroptosis pathway in colon cancer based on analysis from TCGA data. Collectively, our results demonstrated a novel tumour suppressor role of CYGB through p53-YAP1 axis in regulating ferroptosis and suggested a potential therapeutic approach for colon cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias do Colo/metabolismo , Citoglobina/genética , Ferroptose , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Carbolinas/toxicidade , Neoplasias do Colo/genética , Citoglobina/metabolismo , Células HCT116 , Humanos , Piperazinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima , Proteínas de Sinalização YAP
14.
Curr Mol Pharmacol ; 14(1): 88-100, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32410568

RESUMO

OBJECTIVE: The present study was conducted to elucidate the underlying molecular mechanism as well as the potential hepatoprotective effects of royal jelly (RJ) against hepatic ischemia/ reperfusion (IR) injury. METHODS: Rats were assigned into four groups; sham (received vehicle), IR (30 minutes ischemia and 45 minutes reperfusion), sham pretreated with RJ (200 mg/kg P.O.), and IR pretreated with RJ (200 mg/kg P.O.). The experiment lasted for 28 days. RESULTS: Hepatic IR significantly induced hepatic dysfunctions, as manifested by elevation of serum transaminases, ALP and LDH levels. Moreover, hepatic IR caused a significant up-regulation of P38-MAPK, NF-κB-p65, TNF-α and MDA levels along with marked down-regulation of Nrf-2, HO-1, COX-4, cytoglobin, IκBa, IL-10, GSH, GST and SOD levels. Additionally, marked histopathological changes were observed after hepatic IR injury. On the contrary, pretreatment with RJ significantly improved hepatic functions along with the alleviation of histopathological changes. Moreover, RJ restored oxidant/antioxidant balance as well as hepatic expressions of Nrf- 2, HO-1, COX-4, and cytoglobin. Simultaneously, RJ significantly mitigated the inflammatory response by down-regulation of P38-MAPK, NF-κB-p65, TNF-α expression. CONCLUSION: The present results revealed that RJ has successfully protected the liver against hepatic IR injury through modulation of cytoglobin, Nrf-2/HO-1/COX-4, and P38-MAPK/NF-κB-p65/TNF- α signaling pathways.


Assuntos
Antioxidantes/química , Ácidos Graxos/química , Isquemia/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Citoglobina/genética , Citoglobina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/farmacologia , Feminino , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hepatócitos , Humanos , Interleucina-10/metabolismo , Fígado , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Reperfusão , Transdução de Sinais , Superóxido Dismutase/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Dev Biol ; 472: 1-17, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33358912

RESUMO

The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.


Assuntos
Citoglobina/genética , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural/citologia , Crista Neural/embriologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Sistemas CRISPR-Cas , Diferenciação Celular/genética , Cromossomos/genética , Citoglobina/metabolismo , Desenvolvimento Embrionário/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Mutação , Crista Neural/metabolismo , Fenótipo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
16.
Mol Med Rep ; 22(4): 3493-3503, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32945464

RESUMO

Neonatal hypoxic­ischemic brain damage (HIBD) is a common clinical syndrome in newborns. Hypothermia is the only approved therapy for the clinical treatment; however, the therapeutic window of hypothermia is confined to 6 h after birth and even then, >40% of the infants either die or survive with various impairments, including cerebral palsy, seizure disorder and intellectual disability following hypothermic treatment. The aim of the present study was to determine whether nasal transplantation of Cytoglobin (CYGB) genetically modified human umbilical cord­derived mesenchymal stem cells (CYGB­HuMSCs) exhibited protective effects in neonatal rats with HIBD compared with those treated without genetically modified CYGB. A total of 120 neonatal Sprague­Dawley rats (postnatal day 7) were assigned to either a Sham, HIBD, HuMSCs or CYGB­HuMSCs group (n = 30 rats/group). For HIBD modeling, rats underwent left carotid artery ligation and were exposed to 8% oxygen for 2.5 h. A total of 30 min after HI, HuMSCs (or CYGB­HuMSCs) labeled with enhanced­green fluorescent protein (eGFP) were intranasally administered. After modeling for 3, 14 and 29 days, five randomly selected rats were sacrificed in each group, and the expression levels of CYGB, ERK, JNK and p38 in brain tissues were determined. Nissl staining of the cortex and hippocampal Cornu Ammonis 1 area of rats in each group were compared after 3 days of modeling. TUNEL assay and immunofluorescence were performed 3 days after modeling. Long term memory in rats was assessed using a Morris­water maze 29 days after modeling. The HIBD group demonstrated significant deficiencies compared with the Sham group based on Nissl staining, TUNEL assay and the Morris­water maze test. HuMSC treated rats exhibited improvement on in all the tests, and CYGB­HuMSCs treatment resulted in further improvements. PCR and western blotting results indicated that the CYGB mRNA and protein levels were increased from day 3 to day 29 after transplantation of CYGB­HuMSCs. Furthermore, it was identified that CYGB­HuMSC transplantation suppressed p38 signaling at all experimental time points. Immunofluorescence indicated the scattered presence of HuMSCs or CYGB­HuMSCs in damaged brain tissue. No eGFP and glial fibrillary acidic protein or eGFP and neuron­specific enolase double­stained positive cells were found in the brain tissues. Therefore, CYGB­HuMSCs may serve as a gene transporter, as well as exert a neuroprotective and antiapoptotic effect in HIBD, potentially via the p38 mitogen­activated protein kinase signaling pathway.


Assuntos
Citoglobina/genética , Citoglobina/metabolismo , Hipóxia-Isquemia Encefálica/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Administração Intranasal , Animais , Animais Recém-Nascidos , Apoptose , Células Cultivadas , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Hipóxia-Isquemia Encefálica/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Cordão Umbilical/metabolismo , Cordão Umbilical/transplante
17.
Chem Pharm Bull (Tokyo) ; 68(8): 806-809, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32461519

RESUMO

The direct electron transfer between human cytoglobin (Cygb) and the electrode surface, which would allow manipulating the oxidation states of the heme iron in Cygb, was first observed by immobilizing Cygb on a nanoporous gold (NPG) electrode via a carboxy-terminated alkanethiol. The voltammetric performances of the wild type and mutated Cygb-immobilized NPG electrodes were evaluated in the absence or presence of potential substrates. The obtained results demonstrated that the usefulness of the proposed method in understanding the function of Cygb in molecular basis.


Assuntos
Citoglobina/química , Técnicas Eletroquímicas/métodos , Citoglobina/genética , Citoglobina/metabolismo , Eletrodos , Transporte de Elétrons , Ouro/química , Humanos , Peróxido de Hidrogênio/química , Cinética , Mutagênese Sítio-Dirigida , Nanoporos , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
18.
BMC Dev Biol ; 20(1): 11, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393223

RESUMO

BACKGROUND: The tissue regeneration process requires high oxygen and energy levels. Cytoglobin (Cygb) is a member of the globin family, which has the ability to bind oxygen, plays a role in dealing with oxidative stress, and carries oxygen into the mitochondria. Energy production for tissue regeneration is associated with mitochondria-especially mitochondrial biogenesis. The peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha protein helps to regulate mitochondrial biogenesis. House geckos (Hemidactylus platyurus) are reptiles that have the ability to regenerate the tissue in their tails. House geckos were selected as the animal models for this study in order to analyze the association of Cygb with oxygen supply and the association of PGC-1α with energy production for tissue regeneration. RESULTS: The growth of house gecko tails showed a slow growth at the wound healing phase, then followed by a fast growth after wound healing phase of the regeneration process. While Cygb mRNA expression reached its peak at the wound healing phase and slowly decreased until the end of the observation. PGC-1α mRNA was expressed and reached its peak earlier than Cygb. CONCLUSIONS: The expressions of both the Cygb and PGC-1α genes were relatively high compared to the control group. We therefore suggest that Cygb and PGC-1α play an important role during the tissue regeneration process.


Assuntos
Citoglobina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Citoglobina/genética , Regeneração Tecidual Guiada , Lagartos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Transdução de Sinais
19.
J Hepatol ; 73(4): 882-895, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32330605

RESUMO

BACKGROUND & AIMS: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species. The molecular role of CYGB in human hepatic stellate cell (HSC) activation and human liver disease remains uncharacterised. The aim of this study was to reveal the mechanism by which the TGF-ß1/SMAD2 pathway regulates the human CYGB promoter and the pathophysiological function of CYGB in human non-alcoholic steatohepatitis (NASH). METHODS: Immunohistochemical staining was performed using human NASH biopsy specimens. Molecular and biochemical analyses were performed by western blotting, quantitative PCR, and luciferase and immunoprecipitation assays. Hydroxyl radicals (•OH) and oxidative DNA damage were measured using an •OH-detectable probe and 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA. RESULTS: In culture, TGF-ß1-pretreated human HSCs exhibited lower CYGB levels - together with increased NADPH oxidase 4 (NOX4) expression - and were primed for H2O2-triggered •OH production and 8-OHdG generation; overexpression of human CYGB in human HSCs reversed these effects. Electron spin resonance demonstrated the direct •OH scavenging activity of recombinant human CYGB. Mechanistically, pSMAD2 reduced CYGB transcription by recruiting the M1 repressor isoform of SP3 to the human CYGB promoter at nucleotide positions +2-+13 from the transcription start site. The same repression did not occur on the mouse Cygb promoter. TGF-ß1/SMAD3 mediated αSMA and collagen expression. Consistent with observations in cultured human HSCs, CYGB expression was negligible, but 8-OHdG was abundant, in activated αSMA+pSMAD2+- and αSMA+NOX4+-positive hepatic stellate cells from patients with NASH and advanced fibrosis. CONCLUSIONS: Downregulation of CYGB by the TGF-ß1/pSMAD2/SP3-M1 pathway brings about •OH-dependent oxidative DNA damage in activated hepatic stellate cells from patients with NASH. LAY SUMMARY: Cytoglobin (CYGB) is a respiratory protein that acts as a scavenger of reactive oxygen species and protects cells from oxidative DNA damage. Herein, we show that the cytokine TGF-ß1 downregulates human CYGB expression. This leads to oxidative DNA damage in activated hepatic stellate cells. Our findings provide new insights into the relationship between CYGB expression and the pathophysiology of fibrosis in patients with non-alcoholic steatohepatitis.


Assuntos
Citoglobina/genética , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , NADPH Oxidase 4/genética , Hepatopatia Gordurosa não Alcoólica/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta1/metabolismo , Biópsia , Células Cultivadas , Citoglobina/biossíntese , Regulação para Baixo , Feminino , Células Estreladas do Fígado/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , NADPH Oxidase 4/biossíntese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/genética , Proteína Smad3/biossíntese
20.
Antioxid Redox Signal ; 32(16): 1155-1171, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31910047

RESUMO

Aims: Cytoglobin (CYGB) is a member of the mammalian globin family of respiratory proteins. Despite extensive research efforts, its physiological role remains largely unknown, but potential functions include reactive oxygen species (ROS) detoxification and signaling. Accumulating evidence suggests that ROS play a crucial role in podocyte detachment and apoptosis during diabetic kidney disease. This study aimed to explore the potential antioxidative renal role of CYGB both in vivo and in vitro. Results: Using a Cygb-deficient mouse model, we demonstrate a Cygb-dependent reduction in renal function, coinciding with a reduced number of podocytes. To specifically assess the putative antioxidative function of CYGB in podocytes, we first confirmed high endogenous CYGB expression levels in two human podocyte cell lines and subsequently generated short hairpin RNA-mediated stable CYGB knockdown podocyte models. CYGB-deficient podocytes displayed increased cell death and accumulation of ROS as assessed by 2'7'-dichlorodihydrofluorescein diacetate assays and the redox-sensitive probe roGFP2-Orp1. CYGB-deficient cells also exhibited an impaired cellular bioenergetic status. Consistently, analysis of the CYGB-dependent transcriptome identified dysregulation of multiple genes involved in redox balance, apoptosis, as well as in chronic kidney disease (CKD). Finally, genome-wide association studies and expression studies in nephropathy biopsies indicate an association of CYGB with CKD. Innovation: This study demonstrates a podocyte-related renal role of Cygb, confirms abundant CYGB expression in human podocyte cell lines, and describes for the first time an association between CYGB and CKD. Conclusion: Our results provide evidence for an antioxidative role of CYGB in podocytes.


Assuntos
Antioxidantes/metabolismo , Citoglobina/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Citoglobina/deficiência , Citoglobina/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/patologia , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...